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Abstract
It was shown that on applying two radio-frequency fields, both of the same
amplitude, one rotating at the frequencyωI for nuclei inside the diffusion barrier
and one rotating at the frequency ωS for nuclei outside the diffusion barrier,
the Hartmann–Hahn condition will be reached, which results in conservation
of Zeeman energy in the spin-diffusion process and destruction of the spin-
diffusion barrier. This technique can be used to detect the nuclear magnetic
resonance signal from the nuclei located near paramagnetic impurities.

1. Introduction

The concept of spin diffusion, as a means of transporting nuclear spin energy, was introduced
by Bloembergen [1] in order to explain the unexpected fast nuclear magnetic relaxation in
solids containing paramagnetic impurities (PI). Such relaxation originates from the magnetic
dipole–dipole interaction of PI with neighbouring nuclei, which leads to the local spin–lattice
relaxation rate being inversely proportional to the sixth power of the distance from the PI.
Thus, near the PI the equilibrium with the lattice is reached at a faster rate [1–3]. So, the
nuclear magnetization during the relaxation process is spatially inhomogeneous over a sample
volume, and this induces a spatial diffusion of the nuclear spin energy by, for example, flip-flop
transitions due to the dipole–dipole interactions between nuclear spins.

Since the local magnetic field in the vicinity of the PI region is very large, the Larmor
frequencies of nuclei located near the PI differ appreciably from those in the bulk of the sample.
This results in two effects [2,4]: (i) the nuclei from the region near to the PI do not contribute
to the signal produced by the other nuclei in a measurement; and (ii) in this region, it is no
longer possible for the spin-diffusion process to occur, since the total Zeeman energy of the
spins is not conserved by the flip-flop transitions. So, near each PI there is a region inside
which the diffusion is strongly quenched. The size of such a region can be defined as the
distance from a PI at which the local magnetic field of the PI is of the order of the local dipolar
field produced by nuclear spins. For NMR it is of the order of ∼10−7 cm [2, 4, 5]. The NMR
signal of the nuclei from the vanishing-diffusion region is very difficult to detect [6], because
the number of nuclei inside the diffusion barrier area is smaller than that in the bulk of the

0953-8984/02/040873+09$30.00 © 2002 IOP Publishing Ltd Printed in the UK 873

http://stacks.iop.org/cm/14/873


874 G B Furman and S D Goren

sample. For the NMR case the fraction of these nuclei is of the order of ∼10−2–10−4. At
the same time, the spectrum of the nuclei from the vanishing-diffusion region is extremely
sensitive to nuclear position and therefore can be a useful tool for determining the geometric
and electronic structure.

The situation is very similar to the case of spins in low abundance (‘rare’ spins). From
the NMR point of view we have two nuclear species: inside the diffusion barrier and outside
the diffusion barrier with different resonance frequencies. In the present paper we consider
the possibility of destroying the diffusion barrier and detecting the impurity-shifted signal
from spins located inside of the diffusion barrier by using the double-nuclear-resonance
technique [7], applying two radio-frequency fields, both of the same amplitude (H1) but
oscillating at different frequencies. The Hartmann–Hahn condition [7] will be reached, which
results in conservation of Zeeman energy in the process of spin diffusion between the nuclear
spins inside and outside the diffusion barrier and destruction of the spin-diffusion barrier.

2. Theory

Let us assume that any given nucleus is influenced by one PI, so the sample can be divided
up into NP subsystems with characteristic size R = 3

√
3V /(4πNP ) (NP and V are the

number of PI and the volume of the sample, respectively), each of which include only one PI
surrounded by nuclear spins. Furthermore, let us divide the subsystems into three regions [8,9]:
(A) 0 < r < rn, where rn is the distance from the PI to the nearest nucleus; (B) rn < r < δ,
where δ is the radius of the diffusion barrier; and (C) δ < r < R. Region A does not contain
any nuclei at all, and the majority of the nuclei are in region C. Nuclei from region B located at
equal distances from the PI have the same resonance frequency. The typical atomic constant
(the distance between nuclei) in solids is of the order of l ∼ (2–4) × 10−8 cm and the nuclear
spins nearest to the PI are at about the same distance. If the distribution of the atoms in solids
is regular, then we can estimate the number of layers in region B, NS , consisting of nuclei with
the same resonance frequency, (δ − rn)/ l ∼ 2–5, and the fraction of the nuclei in each layer,
NS/NI ∼ 10−2–10−5, where NI is number of nuclei located in region C. Below, we shall only
consider the nuclei from one layer of region B inside the diffusion barrier and label them as
S-spins. We shall label nuclear spins from region C as I -spins.

Let us consider the spin system consisting of I = 1/2 nuclear spins located in an external
high magnetic field and coupled to PI spins by dipole–dipole interaction (DDI). The evolution
of the spin system irradiated by two radio-frequency fields acting on nuclear spins inside
(located in a layer of region B) and outside (located in region C) the diffusion barrier, may be
described by a solution of the equation for the density matrix ρ(t) (in units of h̄ = 1):

i
dρ(t)

dt
= [H(t), ρ(t)] (1)

with the Hamiltonian

H(t) = HZ + Hdd + HPI + HP + Hrf(t). (2)

The Hamiltonian HZ can be separated into a sum of two parts: HZ = HS
Z + HI

Z , where
HS

Z = ∑NS

µ=1 γ
�H0S

Z
µ +HPS represents the interaction of the nuclear spins S with the magnetic

field �H0 ‖ Z-axis and with the PI, which leads to the resonance frequency of the S-spins being
shifted by the impurity. γ is the gyromagnetic ratio of the nuclear spins. HI

Z describes the
interaction of the I -spins with �H0 outside the diffusion barrier (in region C). Similarly the
nuclear DDI Hamiltonian Hdd can be divided into three parts: Hdd = HII + HSS + HIS , where
HII and HSS describe DDI inside and outside of the diffusion barrier (in any one layer of
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region B and in region C), respectively, and HIS represents the DDI between I - and S-spins.
HPI is the Hamiltonian of the DDI between nuclear I -spins and PI spins. HP describes the
impurity spin system. Hrf(t) = HI

rf(t) + HS
rf(t) gives the action of the rf fields, on both the I -

and S-spin systems, with its own resonance frequencies, ωI and ωS , respectively.
The first rf field, which acts on the I -spin system:

HI
rf(t) = ω1(t) cos(ωI t + φI )

NI∑
µ=1

I x
µ (3)

consists of two parts, the first of them, with ω1(t) = (π/2)δ(t) and φ = 0 for the preparatory
pulse, directed along the Y -axis and the second one, with constant ω1 = γH1 and φ = π/2 for
all times immediately after the first pulse, directed along the X-axis. This technique is used
to achieve two main goals: first, to bring the magnetization of the I -spin system to the spin-
locking state with a very low spin temperature [7]; and second, to decrease the spin-diffusion
relaxation time by at least twice the decrease of the spin-diffusion constant in the rotating
frame [10–13]. The second rf field which acts only on S-spins:

HS
rf(t) = ω1(t) cos(ωSt)

NS∑
µS=1

I x
µS

(4)

(where ωS is the applied frequency) is equal to the impurity-shift resonance frequency,
ω1(t) = ϑ

∑∞
k=0 δ[t − (k + 1

2 )tc], where ϑ = γH1tw. H1 and tw are the amplitude and pulse
duration of the rf pulses; tc is the period of the multiple-pulse sequence. This multiple-pulse
sequence is used for thermal mixing between S- and I -spin systems.

The spin system is situated in an external magnetic field coupled with the nuclear spins
and produces an interaction that is assumed to be very large in comparison to the DDI for
region C. For this case, the non-secular terms of the Hamiltonians, Hdd and HPI (those
terms that do not commute with HZ), may be neglected. The procedure of separation of the
truncated Hamiltonians Hsec

dd and Hsec
PI can be carried out by using the unitary transformation

ρ(t) = P +(t)ρ̃(t)P (t) with

P(t) =
∏

k=S,I

exp

{
it (2I + 1)−1ωk

Nk∑
µk=1

I z
µk

}
. (5)

After the transformation we obtain

i
dρ̃(t)

dt
= [H̃ρ, ρ̃(t)] (6)

with the effective Hamiltonian in the rotating frame

H̃ρ =
∑
k=I,S

(Hj

k + Hsec
dd,k + Hsec

Pk

)
+ Hsec

IS + HP (7)

where

Hj

I = ωI
1

NI∑
µI

I x
µI

Hj

S = ωS
1 (t)

NS∑
µS

I x
µS
. (8)

Hsec
dd,k is the secular part of the nuclear DDI Hamiltonian. In the ‘heteronuclear’ Hsec

IS and
impurity–nuclear DDI Hamiltonians we retain only the secular relative Z-axis term which
gives the dominant contribution to the relaxation process:

Hsec
IS = 1

2

∑
µk 
=ηS

aµkηk
I z
µI
I z
ηS

(9)
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where aµkηk
= γ 2

I r
−3
µkηk

(1 − 3 cos2 θµkηk
) (here rµkηk

and θµkηk
are the spherical coordinates of

the vector �rµkηk
connecting the µth and ηth nuclei in a coordinate system with the Z-axis along

the direction of the external magnetic field �H0), and

Hsec
kP = 1

2

∑
µk 
=j

bµkj I
z
µk
Lz

j . (10)

In this equation, bµk
= γIγP r

−3
µkj

(1 − 3 cos2 θµkj ), where γP is the gyromagnetic ratio of the
PI, and rµkj is the distance between µth nuclear and j th PI spins.

Thermal mixing between the two spin systems I and S occurs when mutual flip-flop
processes, induced by dipole–dipole interaction, can take place with conservation of the total
energy. The conditions for such energy-conserving processes are realized at the crossover
between two frequencies ωI

1 and ωS
1 when rf pulses with amplitude H1 and frequency ωS are

applied. The Hartmann–Hahn condition [7] will be reached: ωI
1 = γIH1 = γSH1 = ωS

1 . We
note that γI = γS .

In the case of ωk
1 ≈ ωloc

P � ωPI � ωloc
dd (here ωloc

g ∼ ||Hg|| is the norm of the operator
Hg and g ≡ P,P I, dd) which holds, for example, if γI � γp, it is convenient to expand the
secular parts of the Hamiltonians Hsec

dd , Hsec
IS , and HPk as follows:

Hsec
kk′ =

2∑
i=−2

Hi
kk′ (11)

where H0
kk is the term which commutes with the operator Hj

k :

H0
kk = − 1

2

∑
µk 
=ηk

aµkηk

[
I x
µk
I x
ηk

− 1
4 (I

+
µk
I−
ηk

+ I−
µk
I +
ηk
)
]

(12)

and Hi
kk with i 
= 0 are the non-secular terms relative to Hk ([Hk,Hi

kk] 
= 0):

H±2
kk =

∑
µk 
=ηk

aµkηk
I±
µk
I±
ηk
. (13)

The operators Hsec
IS and HPk consist only of terms that are non-secular relative to HI or HS :

Hsec
IS =

∑
µk 
=ηS

aµI ηS
(I +

µI
+ I−

µI )(I
+
µS

+ I−
µS
) (14)

Hsec
kP = 1

2

∑
µk 
=j

bµkj (I
+
µk

+ I−
µk
)Lz

j (15)

where I±
µk

= I z
µk

± iI y
µk

.
To obtain the evolution equation for the spin system, we will use the method of non-

equilibrium state operators [14] which was originally applied to the spin diffusion in NMR [15].
Introducing the nuclear spin-density operator

�I (�rk) =
Nk∑

µk=1

δ(�r − �rµ) �Iµk
(16)

the densities of the operator Hj

k can written in the following form:

H (�rk) = ωk
1

Nk∑
µk=1

δ(�rk − �rµk
)I x

µk
. (17)

In the following, we consider the times when the rf pulse with frequency ωS is applied.
In view of the structure of the system, we will choose H(�rk) (with k = I, S) and HP as
the local integral-of-motion operators; the other terms in equation (7) may be considered as
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small perturbations. Following Zubarev [14], we assume that the quasi-equilibrium state is
established in the spin system, and the density matrix can be written as

ρ = Z−1 exp

{
−

∑
k=I,S

∫ rk2

rk1

d�r β(�rk)H(�rk) − βpHP

+
∫ 0

−∞
dt eεt

[ ∑
k=I,S

∫ rk2

rk1

d�r β(�rk)∂H(�rk)
∂t

+ βP

∂HP

∂t

]}
(18)

where Z = Tr exp{· · ·}, and β
j

k (�r) is the local inverse spin temperature, conjugate to Hj

k (�r),
rk1 = δ and rk2 = R for k = I , and rk1 = ml + rn and rk2 = (m + 1)l + rn for k = S,
where m = 0–5 is the layer number in region B, containing nuclei with the same resonance
frequency, beginning from the layer nearest to the PI. In equation (18) all operators are taken
in the Heisenberg representation and, after the integration is performed, we set ε = 0 [14]. If
the heat capacity of the PI reservoir, −(δ/δβP )〈HP 〉, is large in comparison with the nuclear
spin heat capacities and the PI spin–lattice relaxation time is very short, a case which is
experimentally implementable, it is reasonable to consider only the relaxation process with
the constant inverse spin temperature of the PI, βP , equal to that of the lattice: βP = βL.
Therefore, the PI reservoir is in thermal equilibrium with the lattice andβP is independent of the
position. The time dependences of the slowly varying thermodynamic quantities in the integral
of equation (18) were neglected in comparison with the rapidly varying corrections [15].

Applying the commutation rules [I x(�rk), I y(�rk′)] = iδ(�rk − �rk′)I z(�rk), the transport
equations, in the form of localized laws of conservation of the spin energy densities, can
be obtained:

∂H(�rk)
∂t

+ div �j(�rk) = K(�rk) + F(�rk) (19)

∂Hp

∂t
= −

∑
k=I,S

∫ rk2

rk1

d�r ∂H(�rk)
∂t

(20)

where

K(�rk) = −i[H(�rk),Hsec
Pk(t)] = i

ωk
1

2

∫
V

d�rL b(�rk − �rL)I y(�rk)Lz(�rL) (21)

F(�rk) = −i[H(�rk),Hsec
IS (t)] = iωk

1

∫ rk
′

2

rk
′

1

d�rk′ a(�rk − �rk′)I y(�rk)I z(�rk′). (22)

Equation (20) is the result of the energy conservation law. In equation (19), �jk(�r) is the operator
for the flux of the density of the nuclear spin energy:

�j(�rk) = iωk
1

4

∫ rk2

rk1

d�r ′
k (�rk − �r ′

k)a(�rk − �r ′
k)[I

+(�rk)I−(�r ′
k) − I−(�rk)I +(�r ′

k)]. (23)

At high temperatures we can obtain the density matrix in the form [14]

ρ =
{

1 −
∫ 1

0
dλ [B(iλ) − 〈B(iλ)〉eq]

}
ρeq (24)

where the thermodynamic average 〈· · ·〉eq corresponds to an average with the quasi-equilibrium
operator ρeq = e−A/Tr e−A, where

A =
∑
k=I,S

∫ rk2

rk1

d�rk β(�rk)H(�rk) + βPHP (25)
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B(t + iλ) =
∫ 0

−∞
dt eεt

∑
k=I,S

∫ rk2

rk1

d�r {∇β(�rk, t)[e−λA �j(�rk, t)eλA]

+ [β(�rk, t) − βL]e−λA[K(�rk, t) + F(�rk, t)]eλA}. (26)

Let us make some remarks before we obtain the equation describing the spin diffusion and
spin–lattice relaxation of the nuclear spin system in solids containing PI. In the general case of
non-cubic symmetry, the diffusion process is strongly anisotropic and the diffusion coefficient,
D, is a symmetrical tensor of second rank [9]. However, in the case of a polycrystalline sample
or cubic symmetry, D reduces to a scalar quantity. We now confine our consideration to a
system with a polycrystalline sample or cubic symmetry. By using equations (19) and (24)–(26)
and taking into account that for such a case 〈B(t +iλ)〉eq = 0 (if it is not equal to zero, a suitable
choice of the quantities B̃ ≡ B − 〈B〉eq leads to the same result), the diffusion equation can be
obtained:
∂β(�rk, t)

∂t
= (Dk5k − T −1

1ρ (�rk))(β(�rk, t) − βL)

−
∫

d�rk′ T −1
IS (�rk − �rk′)(ωk

1β(�rk, t) − ωk′
1 β(�rk′ , t)) (27)

with the boundary condition

∇β(rk, t)|rk=bk = 0 where bk =
{
rn + ml for k = S

δ for k = I .
(28)

The first term on the right-hand side of equation (27) describes the spin-diffusion process with
the diffusion coefficient

Dk = 1
4

∫ rk2

rk1

d�r ′
k (�rk − �r ′

k)
2a2(�rk − �r ′

k)

∫ ∞

0
dτ G(�rk, �r ′

k, τ ). (29)

Here G(�rk, �r ′
k, τ ) = 〈I +(�rk)I−(�rk)〉eq is the correlation function of the nuclear spins. The

second term gives the variation of βk(�r, t) due to the direct relaxation to the PI with relaxation
time T1ρ(�rk):

T −1
1ρ (�rk) =

∫
V

d�rj b2(�rk − �rj )
∫ ∞

0
dτ gkj (τ ) cosωk

1τ/Tr[H(�rk)]2 (30)

with the correlation function of the nuclear and PI spins gkj (τ ) = 〈I y(�rk, 0)I y(�rk, τ )〉eq

〈I z(�rj , 0)I z(�rj , τ )〉eq. The last term in equation (27) represents the thermal mixing between
I - and S-spin systems with the local relaxation time

T −1
IS (�rk − �rk′) = ωk

1a
2(�rk − �rk′)

∫ ∞

0
dτ gkk′(τ ) cos(ωk

1 − ωk′
1 )τ/Tr[H(�rk)]2 (31)

where gkk′(τ ) = 〈I y(�rk, 0)I y(�rk, τ )I z(�rk′ , 0)I z(�rk′ , τ )〉eq.

3. Results and discussion

By means of equations (27) and (28) the spin dynamics, with both spin temperatures (β(�rI , t)
and β(�rS, t)) time dependent, can be described.

First, let us determine the dependence of the relaxation time of the thermal mixing,
T −1
IS (�rk −�rk′), on the amplitudes of the rf fields, HI

1 and HS
1 . Using the simplest approximation

for gkk′(τ ) [7]:

gkk′(τ ) = gkk′(0) exp

[
−

(
τ

2σ

)2
]

(32)
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after performing the integration over τ , we obtain

T −1
IS (�rk − �rk′) ∼ exp

[
−γ 2(Hk

1 − Hk′
1 )2τ 2

2

]
with k, k′ = I or S. (33)

So, the process of mixing of nuclear spins located near PI and in the bulk of the sample is a
very sharp function of the difference between the amplitudes of the rf fields acting on the I -
and S-spin systems, Hk

1 −Hk′
1 . The double-resonance process takes place when this difference

is close to zero: HI
1 ≈ HS

1 .
Now, let us estimate the effect in the simplest case when during the thermal mixing the

nuclear spin system is isolated from the lattice (tw � TIS � T1ρ) and the energy is conserved:

βICIH
2
1 + βSCSH

2
S = βf(CIH

2
1 + CSH

2
S ) (34)

where βI and βS are the initial inverse spin temperatures of the I - and S-spin systems,
and βf is the final one, after thermal mixing. CI,S = 1

3NI,SI (I + 1)γ 2
I is the Curie

constant. Under the condition ωI
1 = γIH1 = γSH1 = ωS

1 , the change of the ratio βf/βI

is βf/βI = [NI + (βS/βI )NS]/N , where N = NI + NS . Assuming that the S-spin system
is very hot, βS ≈ 0, we have βI/βf ≈ NI/N ≈ 1/(1 + ξ), where ξ = NS/NI =
[(ml + rn)

3 − r3
n]/(R3 − δ3) � 1 for the m-layer.

For instance, we find that for CaF2 doped with Mn2+ [13] with impurity concentration
CP = 3.1 × 1018 cm−3 and the average impurity separation R = 42.5 Å, where for F nuclei
form a simple cubic structure with the lattice constant l = 2.725 Å and δ = 1.3×10−7 cm, the
number of layers in region B is δ/ l ∼ 4 and ξ ∼ 0.07. So, in this case four layers in region B
can be extracted and, using the rf irradiation [16] with four different resonance frequencies
ωS , the NMR signals of the nuclei from each layer can be detected; also the observed decrease
of βI can be reproduced using ten thermal mixing contacts.

More detailed consideration shows that immediately after a disturbance of the nuclear
spin system, there is no gradient of β(�rk), and diffusion is not of importance [4]. To describe
the relaxation we may use equations (27) without the diffusion term; this is the so-called
vanishing-diffusion regime [12]. Furthermore, the S-spins relax most effectively with the PI,
with the result that the S-spins are located very close to the PI which leads to them having a
very short local relaxation time, T1ρ(�rS). So, after the short time, T1ρ(�rS) � T1ρ(�rI ), TIS , the
S-spin system reaches the equilibrium state and only the spin temperature β(�rI ) of the I -spin
system is changed during the relaxation processes, as described by the following equation:

∂β(�rI , t)
∂t

= (DI5I − T −1
1ρ (�rI ) − T −1

IS (�rI ))(β(�rI , t) − βL) (35)

where T −1
IS (�rI ) = ∫ δ

rn
d�rS T −1

IS (�rI − �rS), β(�rS) = βL, and ωI
1 = ωS

1 .
In the presence of a high PI concentration, at the beginning of the relaxation process

equation (35) for the I -spin system has the solutions

β(�rI , t) = β(�rI ,∞) + [β(�rI , 0) − β(�rI ,∞)] exp

(
− t

T1e(�rI )
)

(36)

where T −1
1e (�rI ) = T −1

1ρ (�rI )+T −1
IS (�rI ) andβ(�rI ,∞) is the equilibrium local inverse temperature.

Assuming that all local inverse temperatures are equal at the initial moment and in the
equilibrium state, the value to be averaged is

R(�rI , t) = β(�rI , t) − β(�rI ,∞)

β(�rI , 0) − β(�rI ,∞)
(37)
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which is the normalized local relaxation function. In the limit as the number of nucleiNS → ∞
and number of PINP → ∞, and the volume of the sampleV → ∞, and also forNP/VL = CP ,
the PI concentration, and NS/VL = CS , the S-spin concentration, we have [4, 17]

R(t) = exp

[
−

(
t

T1e

)α]
(38)

where α = d/6, (d is the dimensionality of the sample), and

T −1
1e = T −1

1ρ + T −1
IS (39)

T −1
1ρ = B

[
2πd/2@(1 − d/6)CP

d@(d/2)

]6/d

(40)

T −1
IS = A

[
2πd/2@(1 − d/6)CS

d@(d/2)

]6/d

. (41)

Here A = 〈a(�r)〉θµη,φµη
and B = 〈b(�r)〉θµj ,φµj

are averages over the spherical coordinates of
the vector �rµη connecting the µth and ηth nuclear spins and that connecting the µth and j th
PI spins, respectively. @(x) is the gamma function.

As the result of being in the vanishing-diffusion relaxation regime, the local inverse
temperature, β(�rI , t), becomes spatially distributed over the sample. But for the multiple-
contact method of thermal mixing, this process will cease in the case where tc � T1dif , the
spin–lattice relaxation time of the diffusion part of the relaxation process. If tc � T1dif , then
from the NMR point of view the I - and S-spin systems are fully equivalent and the radius of
the spin-diffusion barrier becomes equal to rn. In this case we consider also the first term in
equation (35). To solve this equation and determine the time dependence, we introduce the
eigenfunctions ϕn(�r) of the operator D5 − T −1

1e (�r) [18]. Assuming the spherical symmetry
approximation to apply, the general solution of equation (35) can be written as an expansion
in terms of the orthogonal functions ϕn(�r) in the following form:

β(rI , t) =
∫

dr ′ ∑
n

exp(−m2
nDt)ϕn(r)ϕ̃

∗
n(r

′) (42)

where the functions ϕn(r) satisfy the equation

5ϕn(r) − (T1e(r)/D)ϕn(r) = −q2
nϕn(r) (43)

with the boundary condition

∇ϕn(r)|r=rn+ml = 0. (44)

Equation (43) is well known in the theory of scattering for the low-energy limit [19]. It has an
asymptotic solution ϕn(r) ∼ sin(qnr +ςn)/r for r � rn, where ςn ∼ qnE is the phase shift and
E is the scattering length [19]. Taking into account the spherical symmetry (after averaging
over a polycrystalline sample) and using the boundary condition (44), we obtain [19]

ξ =
(
A + B

D

)1/4
@(3/4)

2@(5/4)
. (45)

Using the last result, for the long-time approximation, t � (rn + ml)2/D, we obtain the
normalized relaxation function for the diffusion-limited regime:

R(t) = exp

(
− t

T1dif

)
(46)

where

T1dif =
[

2πCPD
3/4(A + B)1/4 @(3/4)

@(5/4)

]−1

. (47)
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In conclusion, we have obtained an evolution equation describing the phenomenon of
double resonance between nuclei inside and outside the spin-diffusion barrier. On applying
two radio-frequency fields, of the same amplitude, one rotating at the frequency ωI for nuclei
inside the diffusion barrier and one rotating at the frequency ωS for nuclei outside the diffusion
barrier, the Hartmann–Hahn condition will be reached, which results in conservation of Zeeman
energy under the spin-diffusion process and destruction of the spin-diffusion barrier. This
technique can be used to detect the NMR signal from the nuclei near the PI, which will be
useful in the determination of crystal structure.
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